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18.1 Overview

In previous lecture, we have started Fault tolerance, in this lecture we will continue it and cover following
topics

• Agreement in presence of faults

• Reliable Communication

• Distributed Commit

18.2 Agreement in Faulty Systems

The two main type of faults are crash failures and Byzantine faults. Fault tolerance during crash failures
allows us to deal with servers which crash silently. Detecting failures can be achieved by sending “heartbeat”
messages. In a system where we only have silent faults, if the system has k faults simultaneously then we
need k+1 nodes in total to reach agreement. In Byzantine faults, the server may produce arbitrary responses
at arbitrary times. It needs higher degrees of replication to deal with these faults. To detect k byzantine
faults, we need 2k + 1 processes. Byzantine faults are much more difficult to deal with.

Figure 18.1: Failure masking by redundancy

Question: Is Figure 18.1 for Byzantine or not?
Answer: You can do Byzantine with it. Crashes are easy. Crashes can tolerate two faults, but you can do
Byzantine as well.

18-1
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18.2.1 Byzantine Faults

Let’s explore two situations where the aim is to reach to an agreement on a one-bit message, Scenario-1: Two
perfect process with faulty network (Two Army Problem) Scenario-2: faulty processes with perfect network
(Byzantine generals problem)

18.2.1.1 Two Army Problem

In this problem, two armies in separate camps must agree on whether to attack a fort for the attack to succeed.
They communicate via messengers, each sending a vote message (“attack” or “retreat”) and waiting for an
acknowledgment (“ack”) from the other. However, enemy interference leads to unreliable communication,
leaving the army uncertain if their messages or acknowledgments were received.

For example, suppose the first general sends an “attack” message. The second general receives the message
and sends an “ack,” but the messenger carrying the “ack” is killed. The first general never receives the ack,
so they do not attack. The second general attacks, but the attack fails because the first general does not
attack. Suppose instead the second general waits to receive an additional “ack” from the first general before
attacking. But suppose the third messenger carrying the second “ack” is killed—now the first general will
attack and the second general will not. So instead the first general waits for the second general to send a
third “ack”... and so on, which leads to an infinite loop.
Summary : Two perfect processes can never reach an agreement in the presence of an unreliable network.
Question: If the network is faulty, can we not use cryptography?
Answer: We can use cryptography but we still cannot deal with an unreliable network that completely
drops messages.
Question:In TCP, 2 ACKs are adequate, in two army problem why two acks are not sufficient ?
Answer: Firstly, TCP uses 1 ACK, secondly in TCP we are not trying to reach an agreement to coordinate
something. To know if a message is delivered or not an ACK is sufficient, which is not the same case when
we are trying to reach an agreement.
Question: Can you reach probabilistic agreement in the Byzantine general problem?
Answer: The network of communication in this problem is faulty, thus there is no such thing as probabilistic
agreement. This problem cannot be solved if the underlying communication network is faulty.
Question: What does it mean to see if the network is reliable?
Answer: Messages are delivered and delivered correctly. For example, TCP does that for us. But, we don’t
know if the generals can be trusted or not.

18.2.1.2 Byzantine Generals Problem

In this problem N generals are trying to reach to an agreement with a perfect channel but M out of N
generals are traitors.
Problem 1: Here M= 1 and N = 4. A recursive solution to the problem is provided in 18.2 In this, each
node collects information from all other nodes and sends it back to all others so that each node now can see
the view of the world from the perspective of other nodes. By simple voting, each node can decide on one
correct value or spot if something’s wrong, like a Byzantine failure/traitor.

Question: Does Figure 18.2 fail if the number of traitors outnumber the other generals? Answer: Yes.
Question: In problem 1, what exactly we do in round 2?
Answer: Generals broadcast all the information they have from every other general in the previous round.
Question: What happens if a fault process send same incorrect message in round 2?
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Figure 18.2: Solution to the byzantine general’s problem-1, 1 traitor out 4 generals over a reliable commu-
nication network. a)The generals announce their troop strengths b)The vectors after each general assembles
after round 1 c)The vectors that each general receives after round 2.

Answer: If that is the case, it is acting like a normal process and then it won’t be identified or isolated.
However if, instead of broadcasting their strengths, they perform an addition task, such as computing and
returning the value of 2+2, any incorrect answer would be detected in this scenario.

problem 2 : Here M= 1 and N = 3. We do same steps as problem 1 in 18.3

Figure 18.3: byzantine general’s problem-2, 1 traitor out 3 generals over a reliable communication network.

In this case we can detect the fault but cannot isolate it, in order to isolate the faulty process we need one
more process which functions correctly.

In a system with k such faults, 2k+1 total nodes are needed to only detect that fault is present, while 3k+1
total nodes are needed to reach agreement, despite the faults. Therefore, agreement is possible only if 2k+1
processes function correctly out of 3k + 1 total processes.

18.2.2 Reaching Agreement

If message delivery is unbounded, no agreement can be reached even if one process fails and slow processes
are indistinguishable from a faulty ones. If the processes are faulty, then appropriate fault models can be
used such as BAR fault tolerance where nodes can be Byzantine, altruistic, and rational.
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18.3 Reliable Communication

18.3.1 Reliable One-To-One Communication

One-one communication involves communication between a client process and a server process whose seman-
tics we have already discussed during RPCs, RMIs, etc. In this we only discussed one-to-one communication,
but here we are discussing replication. We need one-to-many communication (multicast or broadcast) in
order to reach agreement. We need to extend the one-to-one scenario to the many-to-one scenario in order
to solve the agreement problem. Figure 18.4 depicts several failure modes in the one-to-one scenario. These
failures can be dealt by (1) Using reliable transport protocols such as TCP (b and d can be dealt with in
this manner), or (2) handling failures at the application layer. (a, c and e can be dealt with in this manner)

Figure 18.4: Types of failures in the one-to-one scenario. (a) Client unable to locate server. (b) Lost request
messages. (c) Server crashes after receiving request. (d) Lost reply messages. (e) Client crashes after sending
request.

18.3.2 Reliable One-To-Many Communication

Broadcast is sending a message to all nodes in a network. Multicast is sending to a subset of all nodes.

If there are lost messages due to network inconsistencies, we need to retransmit messages after a timeout.
There are two ways to do this: ACK-based schemes and NACK-based schemes.

ACK-based schemes :

• Send acknowledgement(ACK) for each of the message received. If the sender does not receive the
ACK from a receiver, after timeout it retransmits the message.
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• Sender becomes a bottleneck: ACK based scheme does not scale well. As number of receivers in
the multicast group grows (say 1000 - 10,000) then the number of ACK messages that needs to
be processed also grows.

• ACK based retransmission works well for one-one communication but doesnot scale for one-many
communication. Large bandwidth gets used in acknowledgment process which results in an ACK
explosion.

Figure 18.5: Here, all the receivers have their last packet received as #24 except receiver 3 which missed
packet #24. Hence, it’s last packet is #23. As soon as it receives packet #25, it knows it missed the packet
#24.

Figure 18.6: Each receiver now sends an acknowledgment ACK either in form of received packet #25 or
missed packet #24. As we can see for a single packet, sender receives ’n’ ACKs

Question How to reduce the overhead of ACK in one-many communication?
Ans. Instead of sending acknowledgements send negative acknowledgement (NACK).

NACK-based schemes :

• NACK-based schemes deals with sender becoming a bottleneck and the ACK-explosion issue.

• ACK indicates a packet was received. NACK indicates a packet was missed.

• Scheme explanation: Send packet to multicast group, if receivers receives a packet, they don’t do
anything. If receiver sees a missing packet, it sends a NACK to nearby receiver as well as the
sender. Sender or neighbouring receivers would re-transmit the missed packet. This optimization
works only if the neighboring receivers have the received packets stored in a buffer.

• Sender receive only complaint about the missed packets and this scheme scales well for multicast
as the #NACKs received is far less than the #ACKs, unless a massive amount of packet loss.

• Much more scalable than ACK-based schemes

• Effective only in networks with occasional drop-offs and is not suitable for highly lossy networks.
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Figure 18.7: Each receiver now suppresses their ACK feedback. Only receiver 3 sends a NACK to other
receivers and the sender.

Question Are messages not queued at each receiver and delivered in the same sequence? If a message
is missed, can’t we request it from one of the receivers?
Ans. Yes, we maintain a buffer to order and deliver messages sequentially. In case of a missed message,
we send a NACK to both the sender and a subset of nearby receivers.
Question How does the receiver know that it missed a packet?
Ans. Assuming the packets are received in sequence and each packet have a packet number. If receiver
sees a gap in the sequence, it knows a packet was missed and sends a NACK.

Question Is their a possibility that receive can move from one IP address to another ?
Ans. This possibility exists and is true if its one-one or one-many communication. Socket connection
breaks if the IP address changes and connection needs to be re-established. The above mentioned
schemes does not handle node mobility.

Question How to deal with last packet or if sender sends only one packet as receiver may never know
if it missed the packet?
Ans. Send Dummy packet at the end of transmission and to make sure that dummy packet is ac-
knowledged.

Question Is a NACK-based part of TCP protocol or part of the higher level application?
Ans. You can ask that question of multicast itself. There are two versions of multicast. IP multicast
where an IP address is a group address, and sending to that group IP send to the entire group. That is
at the network level. You can also implement this at the application level. The NACK based scheme
is mostly done at an application level.

Question Can you implement it on top of UDP
Ans. Yes. Application level multicast is implemented internally effectively as n unicast messages.
Network level is just one socket, and it goes to n receivers.

Question Is it like a pub sub architecture?
Ans. Not exactly. This is more level than publish and subscribe. This is an abstraction one-to-one
communication. You can build publish subscribe on top of this.

This scheme, only addresses how to send a message to all members of the group, it does not discuss
other properties of multicast like:

• FIFO order: Messages will be delivered in the same order that they are sent.

• Total order: All processes receive messages in the same order. Total order does not require FIFO.
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• Causal order: It is based on the happens before relationship. If send(m1) happens before send(m2),
then the receive(m1) should also happen before receive(m2) between processes.

18.3.3 Atomic multicast

Atomic multicast guarantees all or none. It guarantees that either all processes in a group receive a packet
or no process receives a packet.

Replicated databases We can’t have a scenario where M out of N DB replicas have executed some DB
update an the rest haven’t. It needs to be ensured that every update to the database is made by all
or none.

Problem How to handle process crashes in a multicast?

Solution Group view: Each message is uniquely associated with a group of processes.

If there is a crash:

• Either every process blocks because ’all’ constraint will not be satisfied.

• Or all remaining members need to agree to a group change. The process that crashed is ejected
from the group.

• If the process rejoins, it has to run techniques to re-synchronize with the group such that it is in
a consistent state.

Figure 18.8: Initially all process are up and are part of a group {P1,P2,P3,P4}. All the messages are being
reliable multicasted to each of the processes. At dotted line2, P3 crashes while sending a message. From this
point onwards, the group {P1,P2,P3,P4} will not maintain the ’all’ property of atomic multicast. Hence, P1,
P2 and P4 agree on a group change and then start atomic multicast amongst themselves (the new group).
At a later point P3 recovers and rejoins. At this point, it run synchronization algorithms to bring itself
up-to-date with other members of the group it wants to rejoin.
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18.3.4 Implementing virtual synchrony

Reliable multicast and atomic multicast are only two ways of implementing virtual synchrony. There are
many variants of these techniques as well as other virtual synchrony techniques which may be used in different
application based on the requirements of the application.

• Reliable multicast: Deals only with network issues like lost packets or messages. There is no message
ordering. NACK based.

• FIFO multicast: Variant of reliable multicast where each sender’s message are sent in order. But, there
is not guarantee that messages across senders would be ordered as well.

• Causal multicast: Variant of reliable multicast. Causal dependence across messages which are sent in
order.

• Atomic multicast: Totally ordered, all or nothing delivery. Deals with process crashes

• FIFO atomic multicast: Variant of atomic multicast.

• Causal atomice multicast: Variant of atomic multicast.

Figure 18.9:

Question: How do we know which processes are up and which are crashed?
Answer: To detect which nodes are up and which are crashed, we can implement several procedures like
heartbeat messages to know the status of nodes. These are crash faults not byzantine, so they are easy to
track.

Question: Why does atomic multicast have total ordering ?

Answer: Atomicity is a stronger property than total order, it is more expensive. Thus the system may as
well have total order if it has atomicity.

Question: What happens in the scenario where some processes receive the message and other do not receive
the message ?

Answer: There is a difference between receiving or delivering a message and applying/comitting the message.
The commit of a message should take place only after consensus in order to ensure safety, this is discussed
later on in the lecture.

Question: Is causal ordering stricter than FIFO?

Answer: Yes, FIFO only ensures ordering within a process whereas, causal ordering ensures ordering across
processes.
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18.4 Distributed commit

Atomic multicast is an example of a more general problem where all processes in a group perform an operation
or not at all. Examples:

• Reliable multicast: Operation = Delivery of a message

• Atomic multicast: Operation = Delivery of a message

• Distributed transaction: Operation = Commit transaction

Possible approaches

• Two phase commit (2PC)

• Three phase commit (3PC)

18.4.1 Two phase commit

Two phase commit is a distributed commit approach used in database systems which takes into account
the agreement of all the processes in a group which have replicated database copies. This approach uses a
coordinator and has two phases:

• Voting phase: Processes vote on whether to commit

• Decision phase: Actually commit or abort based on the previous voting phase

The algorithm for this approach can be explained using Fig 18.10

• The coordinator first prepares or asks all the processes to vote if they want to abort or commit a
transaction.

• All the processes vote. If they vote commit, they are ready to listen to the voting results.

• The coordinator collects all replies.

• If all the votes are to commit the transaction, the coordinator asks all processes to commit.

• All processes acknowledge the commit

• In case of even a single abort transaction vote including coordinator process’s own abort vote, the
coordinator asks all processes to abort.

Question How the coordinator is chosen?
Ans. Leader Election.

Question If the process is voting for aborting, is the process up/down?
Ans. If the process is voting the assumption is that the process is up. If the process is down then there will
not be any response. This scheme provides safety property but not liveness property. Drawback of two phase
commit process is blocking when the coordinator crashes. If the process crashes, eventually the transaction
aborts when the coordinator does not hear back from the process.
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Figure 18.10: Steps showing a successful global commit using 2PC approach

Figure 18.11: 2PC: Coordinator’s state transition. From INIT state, the coordinator asks all processes
to vote and goes into WAIT state If any one process votes abort, the coordinator goes to ABORT state and
issues global-abort. If all processes vote commit, coordinator goes in COMMIT and issues a global-commit.

Question What if it takes long for the process to vote commit?
Ans. Process can vote to commit and coordinator makes decision to abort or to commit.

Question What if the process is byzantine faulty?
Ans. Two phase commit scheme does not work if the process is byzantine faulty. we are assuming crash
fault tolerance in both two phase and three phase commit.

Question Is the global abort message sent by coordinator?
Ans. The result of the vote is always sent by the coordinator in decision phase.

Question When the global abort message is sent by coordinator?
Ans. If any process vote abort the coordinator sends global abort to all processes.

Recovering from a crash : When a process recovers from a crash, it may be in one of the following states:

• INIT: If the process recovers and is in INIT state, then abort locally and inform coordinator. This
is safe to do since this process had not voted yet and hence coordinator would be waiting for its
vote anyway.
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Figure 18.12: 2PC: Subordinate process’s state transition. A process may vote abort and go directly
into ABORT state. This is because this single abort would lead to global-abort. A process may vote commit
and go into READY state. On being READY and receiving an abort, the process goes into ABORT state.
On being READY and receiving a commit, the process goes into COMMIT state.

• ABORT: The process being in ABORT state means that coordinator would have issued a global-
abort based on the abort vote of this process, hence the process can safely stay in the state it is
or move to INIT state.

• COMMIT: The process being in COMMIT state means the coordinator already had issued global
commit and this process now can safely stay in this state or move to INIT state.

• READY: The process in this state may be due to a variety of possibilities hence as soon as any
process recovers and finds itself in a READY state, it checks other processes for their state to get
hint of the group status.
The table describes the actions of recovered process P on seeing the state of a process Q and the
reason for such action.
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State of Q Action by P Reason

COMMIT
Make transition to

COMMIT

Any process can be
in commit only if
coordinator issued
a global-commit

ABORT
Make transition to

ABORT

2 scenarios:

• If process Q
has aborted
itself. Then
coordinator
would issue a
global-abort.
Hence, P can
abort.

• If process
Q aborted
because of a
global-abort.
P can abort in
this case too.

INIT
Make transition to

ABORT

If process Q is in
INIT means it has
not voted yet.

Thus, voting phase
is still going on.
Process P can
abort safely.

READY
Contact another

participant

Since, based on
process Q’s

READY state,
process P can’t

infer much. Hence,
P should ask

another process.

If process Q is in READY : Process Q being in READY state requires a further analysis of action:

• Keep asking other processes about their state

• If at least one of them is not in the READY state then choose an appropriate action from the
table above.

• If all of them are in the READY state and are waiting to hear from the coordinator, process P
can’t make a decision yet. All other processes can’t make any decision either.
The reason: Coordinator itself is a participant in the vote, hence, based on the action it takes
after recovering, the option decided by the processes as a group may be wrong. That is:

– All processes can’t just commit because coordinator may recover and want to abort.

– All processes can’t just abort because coordinator may recover and see that every process
had voted commit and want to commit and issue a global-commit. Other processes in abort
state would lead to inconsistent state.
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Problem of 2PC If the coordinator crashes without delivering the results of a vote, all processes will be
deadlocked. This is called blocking property of 2 phase commit.

Question: Is it feasible to discard coordinator and elect a new coordinator in case of deadlock ?
Answer: we can do that in subsequent process but it is still a deadlock for current process.

Question: If the co ordinator has send messages to some processes and not all and then it crashes then
what happens ?
Answer: Two properties need to be discussed to answer this, safety and livenss. Safety: Nothing bad
happens, the protocol does not reach an incorrect decision. Liveness: There is progress, the protocol reaches
a decision. The 2pc guarantees safety and not liveness.

Question: what happens if a node crashes after it works to commit?
Answer: Process upon restarting/re-initialisation needs to check it’s last state and make a decision.E.g: If
it’s in init state, that means that it did not vote for the operation otherwise it would have been in the ready
state, in this case, it’s best to abort and inform coordinator about the decision so it can make progress.

If the process was re-initialised with a ”ready” last state, then it means that it voted before crashing but
doesn’t know the result, so it needs to check other process queues for that operation and figure out the
decision.

18.4.2 Three Phase Commit

Two-Phase Commit (2PC) protocol can blocked participants if the coordinator fails . To solve it,three-Phase
Commit (3PC) protocol is designed to help a group of computers in a distributed system agree on whether
to complete an operation (e.g., committing a transaction if coordinator crashes).

It starts with the voting phase, where the coordinator asks all participants if they’re ready to commit. Each
one responds with either a commit or abort vote. If all votes are to commit, the coordinator moves to
the pre-commit phase, sending a message to let participants know that the commit will likely happen and
asking them to get ready. Participants reply to confirm they’re prepared. This middle step is needed for
synchronization.

Finally, in the decision phase, the coordinator sends a final commit or abort message, and all participants
execute the decision. If the coordinator fails after the pre-commit phase, participants can communicate
among themselves to determine the outcome—committing if all received the pre-commit message or aborting
otherwise—thus avoiding the blocking issue of 2PC. However, 3PC is not immune to problems like network
partitions, where communication breakdowns can prevent agreement.

18.5 Replication for Fault Tolerance

Replication for Fault Tolerance is a strategy to make distributed systems reliable by using multiple copies
(replicas) of servers and data. There are two main techniques.

The first technique splits incoming requests across replicas, so if one replica crashes, the others can handle
its load. This works well for crash fault tolerance, where replicas produce correct results when operational.

The second technique sends every request to all replicas, which then vote on their results, and the majority
result is chosen. This is ideal for Byzantine Fault Tolerance (BFT), as it handles cases where a replica might
produce incorrect results. Protocols like Two-Phase Commit (2PC), Three-Phase Commit (3PC), and Paxos
are used to implement these techniques.


